Extensions 1→N→G→Q→1 with N=C2 and Q=C42⋊D5

Direct product G=N×Q with N=C2 and Q=C42⋊D5
dρLabelID
C2×C42⋊D5160C2xC4^2:D5320,1144


Non-split extensions G=N.Q with N=C2 and Q=C42⋊D5
extensionφ:Q→Aut NdρLabelID
C2.1(C42⋊D5) = C42.282D10central extension (φ=1)160C2.1(C4^2:D5)320,312
C2.2(C42⋊D5) = C4×C10.D4central extension (φ=1)320C2.2(C4^2:D5)320,558
C2.3(C42⋊D5) = C424Dic5central extension (φ=1)320C2.3(C4^2:D5)320,559
C2.4(C42⋊D5) = C4×D10⋊C4central extension (φ=1)160C2.4(C4^2:D5)320,565
C2.5(C42⋊D5) = C52(C428C4)central stem extension (φ=1)320C2.5(C4^2:D5)320,277
C2.6(C42⋊D5) = C52(C425C4)central stem extension (φ=1)320C2.6(C4^2:D5)320,278
C2.7(C42⋊D5) = C10.51(C4×D4)central stem extension (φ=1)320C2.7(C4^2:D5)320,279
C2.8(C42⋊D5) = C22.58(D4×D5)central stem extension (φ=1)160C2.8(C4^2:D5)320,291
C2.9(C42⋊D5) = D102(C4⋊C4)central stem extension (φ=1)160C2.9(C4^2:D5)320,294
C2.10(C42⋊D5) = C10.54(C4×D4)central stem extension (φ=1)160C2.10(C4^2:D5)320,296
C2.11(C42⋊D5) = C42.243D10central stem extension (φ=1)160C2.11(C4^2:D5)320,317
C2.12(C42⋊D5) = C42.182D10central stem extension (φ=1)160C2.12(C4^2:D5)320,332
C2.13(C42⋊D5) = C42.185D10central stem extension (φ=1)160C2.13(C4^2:D5)320,336
C2.14(C42⋊D5) = C10.92(C4×D4)central stem extension (φ=1)320C2.14(C4^2:D5)320,560
C2.15(C42⋊D5) = (C2×C42)⋊D5central stem extension (φ=1)160C2.15(C4^2:D5)320,567

׿
×
𝔽